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Abstract
The objective in this paper is  to implement a parsimonious agent-based 
computational model of economic networks whereby agents  make strategic 
decisions based upon profits and information generated through their immediate 
social network. In this model firms are represented by nodes and the links 
between each pair of them are the result of a mutually advantageous economic 
decision. Therefore, links are two-sided or undirected. The economic decision is 
based on two elements, namely: a myopic profit motive and local information 
channeled through collaborating firms. Here I endogenize the formation and 
deletion of links. And also the number of firms (nodes) in the network at each 
time by allowing firms (nodes) to enter and exit the market. Centrality measures 
are reported together with firms’ profits. The evolution of the network yields 
higher connectivity and profits when the (positive) externality is high and the rule 
to exit the market more strict. The higher the network connectivity, the higher the 
overall profits of firms.
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“A town or city lies at the centre of a number of interlocking catchment areas: 
there is the circle from which it obtains supplies; the circle in which its currency, 
weights and measures are used; the circle from which its craftsmen and new 
bourgeois come; the circle of credit (the widest one); the circle of its sales and 
the circle of its purchases; and the successive circles through which news 
reaching or leaving the town travels. Like the merchant’s shop or warehouse, the 
town occupies an economic area assigned by its situation, its wealth and long-
term context.” [emphasis added] Fernand Braudel 1979:188. 

1. Introduction

If we replace the word ‘network’ by the word ‘circle’ in the quote above we 

would realize that those networks evolved out of the initiative of a small group of 

entrepreneurs. Then, others followed those leaders. By this fashion the reach of 

the networks was gradually expanding out during the early industrialization 

period.  The picture that is captured by Braudel's words shows probably more the 

result; or a snapshot at a moment of time; of that process. 

The way in which these networks overlapped at each moment of time was 

not the object of choice of those entrepreneurs. As a matter of fact, each network 

configuration that could have contributed to the development of societies was not 

necessarily taken into account in the original plans that motivated those 

forerunners. Yet, it was due to the particularities of each network that a city 

during the first wave of modern industrialization got access to innovations and 

discoveries. If we think of networks and their relationship to economic 

development, we would probably have a clearer way of understading how the 

`invisible hand' metaphorically used by Adam Smith was actually working. 
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Networks seen from this perspective can represent how the coordination 

of economic activities was carried out through different geographical locations 

(Orsborn and Klein 2007). Here I would propose that these entrepreneurial 

networks may be seen as `coordination structures' that added value to different 

economic activities. The particular configuration of these networks at a moment 

of time can be considered as an unintended consequence of the competitive 

production process. The general objective of this paper is to understand the 

evolution of these networks. 

I propose an agent-based economic model of formation and evolution of 

networks whereby agents make strategic decisions based on economic variables  

and information generated through their immediate social network. It is important 

to bear in mind that the particularities of a network in a static snapshot may not 

be an equilibrium situation but rather one of disequilibrium. Then, a simulated 

environment will help to appreciate this better than other conventional tools. 

In the next section, I review the literature that motivated this study. Section 

3 presents the research questions. Section 4 introduces concepts that will be 

used in the rest of the paper. Section 5 presents my strategy in modeling this 

evolving network. Section 6 shows the reference simulations of the model. 

Section 7 reports the results of experiments after manipulating key parameters in 

the model. The last section summarizes the main findings so far.
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2. Literature Review

Two strands of literature one theoretical and the other empirical dealing 

with social networks yield obvious, though different conclusions concerning the 

evolution of cooperation within a society of individuals that interact based upon 

strategic and self-interested behavior. The more abstract and game-theoretical 

models of social networks sustain that in coordination games in social networks 

multiple equilibria do emerge as stochastically stable states. This is in contrast to 

previous results, such as Young (1998), as I will explain in the subsequent 

section. In line with this, also the study of multiplayer prisoners’ dilemma games 

leads to the results that cooperation emerges on a sparse matrix rather than on 

close-knit networks. The second more empirical strand is based upon studies of 

actual economic sectors yielding as results that particularly in high dense 

networks (not sparse) underlies the productivity and economic growth of certain 

localized industries.

Before I describe the details of these two strands of literature a few 

definitions are in order. I will follow more closely a graph theoretical approach in 

doing this (see Beineke and R. J. Wilson (1997). A network is a set of nodes 

wherein any pair of nodes is connected, at least, by a link. A fixed network is a 

set with a given and finite number of nodes, and a fixed configuration of links 

among the nodes. A dynamic (endogenous) network is a set with a given and 

finite number of nodes, but a variable configuration of links among the nodes. 



5

This variable configuration is usually the result of an endogenous formation 

process for links. An evolving network refers to a variable (even stochastic) 

number of nodes and link configurations among them (Romero 2006, Cowan et. 

al. 2006).  

2.1 Game-theoretical Approach to Social Networks

Jackson and Watts (2002) study fixed and endogenously formed networks 

whereby players are playing coordination games with their neighbors. Each 

player only interacts with those other players whom are directly linked to it, and 

each link is formed after mutual consent. Also, there are costs of forming links. 

This results in games with only two pure Nash equilibria where the payoffs matrix 

is specified in such a way to model the Pareto equilibrium also as the risk-

dominant strategy. 

In the fixed network case they analyze three variations: a lattice or 

complete graph, a circle graph, and a star shaped graph. Stochasticity is added 

when agents choose their strategies. Here their main contribution is their result 

for a star shaped network that is in stark contrast to the conventional result; e.g. 

Young (1998). The latter claims that for any fixed network players always 

converge to the risk-dominant strategy. On the contrary, Jackson and Watts claim 

that the two equilibria may be chosen, thus all players may be playing the risk-

dominant equilibrium or playing the efficient but not risk-dominant equilibrium in 

other periods. 
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In the case in which agents choose not just their strategies, but also whom 

to play with, their main result is that there is multiple equilibria and players may 

coordinate even in those equilibria that are neither risk-dominant nor efficient. By 

manipulating the cost structure of the game, they even go farther to claim that 

even for fixed networks they may exist multiple stochastically stable states. Thus 

concluding that the conventional results; e.g. the risk-dominant solution as the 

unique stochastically stable state; are sensitive to the particularities of agents’ 

behaviors and interaction technologies.    

Hanaki et. al. (2007) address the emergence of cooperation where 

individuals’ behavior and interaction structures are evolving. In this setting there 

is a dynamics on the network generated by the rules that govern individual 

behavior, and also a dynamics of the network that is generated by the rules 

governing social behavior. The rules of individual behavior are based on each 

agent playing a prisoners’ dilemma game with each of its surrounding or local 

neighbors. However, each agent can choose either to cooperate or defect with its 

whole neighborhood; i.e. it cannot play a different strategy against any other 

agent within its neighborhood. Because this is a simulated environment the 

population of players are actually playing a multiplayer prisoners’ dilemma with a 

changing subset of other agents that at each period may be part of its 

neighborhood. Moreover, each player can imitate the most successful strategy--

measured by its payoff-- of the last period by one of its neighbors. Also they can 

break or create a link with another agent to modify their neighborhood. There is 
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not an exogenous upper limit for the number of neighbors that a given agent can 

have during the simulation. 

Concerning the interaction dynamics this is determined by the marginal 

increase or decrease in benefits per player from either breaking or creating a link 

with other player. One important element in this model is the incorporation of 

triadic relationships through which an agent can find a new partner. Nonetheless, 

an agent can decide to create a link with an agent randomly drawn from the 

population at large. There are costs in both cases; that is, for breaking and 

creating a link. Moreover, there is an additional procedure to decide whether to 

trust a new partner. Here two different settings are implemented, namely a full 

and a zero information case about the history of plays by the new partner in 

previous periods.

Their main result is the following: “cooperation can persist in sparse, 

dynamic networks of effectively unlimited size, and in fact tends to fare better in 

large networks than in small ones.” pp.1049. They emphasize how assortative 

matching of partners reinforces cooperation (as in Tullock 1980). But also how 

allowing defectors to be selected by highly trusting cooperators expands this 

cooperation. During the report of their results they also acknowledged that a 

“higher average proportion of cooperating players does not necessarily mean 

that the population average payoff is higher.” pp. 1004. This point is relegated to 

a footnote where they mention that despite this result there still exist a positive 
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correlation (0.48) between the average proportion of cooperating players and the 

population average payoff. But from the main text one of their main results is that 

a high-cost regime for agents' interaction is what determines both the sparseness 

of the network and its greater level of cooperation achieved in relation to when 

there is a lower cost of interaction.       

2.2 Empirical Social Network Analysis 

The main particularity of economic networks at the producer level is that 

they change from period to period. The firms representing the nodes may have 

changed. The networks of raw material providers/retailers and clients may 

change from period to period. Nonetheless, there is a core or nucleus of clients 

to whom the seller frequently sells and a core of providers from whom usually it 

buys. These are their permanent clients and providers. But those not permanents  

clients and providers can be called casual ones. This is network complementarity 

between embedded and `arm's length ties'.

Castilla (2003) and Castilla et. al. (2000) focus on a static network where 

only embeddedness is studied and thus highlighted as the main driving force of 

the creation of capital in Sillicon Valley. Next, I explain two examples that were 

elaborated by Castilla et. al. (2000) and Uzzi (1999). The first work is about 

Silicon Valley and how the development of that region is generated through the 

networks of venture capitalists, educators, engineers, lawyers, trade groups, and 

so on. Regarding the conformation of technological firms a special focus is given 

to employees and referees, managerial, and information networks that are 
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generated and transmitted through different links or channels among firms. The 

second one is about bank-borrowers networks in the Chicago area. 

Castilla et. al. call attention to the fact that: “Extensive labor mobility 

creates rapidly shifting and permeable firm and institutional boundaries and 

dense personal networks across the technical and professional population. The 

ability of Silicon Valley to restructure itself when conditions change through rapid 

and frequent reshuffling of organizational and institutional boundaries and 

members (…“recombinant” process) is one of the factors that underlie the 

dominance of Silicon Valley…” pp. 220. Their analysis show how the creation of 

capital in Silicon Valley is benefited and fostered by the positive externalities 

created due to the high degree of density and the openly competitive 

environment among different networks related to a given firm. An intense 

competition and high mobility of resources allows for a fast rate of learning of 

adaptation to the new conditions of the market. One important characteristic that 

they pointed out is the fact that much of the know-how or informal knowledge 

produced by this interaction among technological firms remains local. 

Using techniques of social network analysis with data collected by 

journalists they are able to trace--since 1947 up to 1986-- the evolution of the 

network of firms, managers, educators and others. This was what contributed to 

the beginnings of projects as Intel and the like. Those individuals or firms with a 

high degree of centrality (connected to a lot of others) and those that play the 
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role of `crucial linkage’ to reach others are discovered. Hence, entrepreneurial 

spirit, willingness to support innovative ideas, but specially networks externalities 

are the key elements identified by them lying at the great development of Silicon 

Valley. 

A visual representation is in the network from which initial public offers 

(IPOs) (data from 1999) are originated in Silicon Valley. Figure 1 shows three 

different kinds of organizations that interact and collaborate to give birth to a new 

enterprise. These are: investments banks, law firms, and accounting firms. 

Furthermore, the issuing firm is not portrayed. There is a link between any two 

firms (from the same or different industry) whenever both are involved in the 

same IPO. The length of the line also conveys relevant information, namely it is 

inversely proportional to the number of co-participations. Thus is a proxy for the 

strength of the link. The more co-participations, the stronger the relationship (i.e. 

the shorter the link).

The main result is that a particular kind of network; defined by centrality 

and degree of connectivity; determines particular outcomes. That is, different 

types of relationships that may exist among the actors of any network. In a 

posterior work by Castilla (2003), he compares the degree of connectivity or 

density of the network of venture capital firms in Sillicon Valley to the one in 

Route 128 (Massachusetts). He found that the higher number of projects and 

amounts of money invested in California are a consequence of the higher 
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connectivity among firms through different industrial sectors and within each of 

them.  

              Figure 1

On the other hand, Uzzi (1999) carried out an analysis of the effects of 

social embeddedness of networks in corporate financial dealings. An important 

contribution of this paper is the triangulation between social network analysis, 

statistics, and original data collected through field research. The sample included 

2400 small or medium size companies and eleven medium size (less than 500 

employees) banks in the Chicago area. His focus is upon the credit networks or 

the bank-borrower links and their effects on the amount and cost of loans 

obtained. The first pair of hypotheses is: a) if bonds or social attachments 

created (and the longer this relation exists) among managers and bankers 
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increase the probability of getting a loan; and b) if given this, the cost will be 

lower. Data from the fieldwork pointed out that bankers and managers do care 

about how to establish a social relationship with one another beyond the cold 

numbers. Because to get to know each other gives them information that is not 

easily found in figures and increases the degree of trust in their relationships.

 

The other pair of subsidiary hypotheses tested by Uzzi is: the likelihood to 

get financing increases if a firm has access to a mix of embedded and arm’s 

length ties. In other words, if a mix of bonding and bridging social relationships in 

different networks is important to arbitrage opportunities and reduce search 

costs. The other hypothesis, then, is if costs of financing are lower when a firm 

has access to these two kinds of social networks. Another way to put this is that if 

a firm only has been focused on cultivating only one kind of these networks' links 

(bonding or bridging) it will be less successful getting loans and reducing the 

costs per loan. 

An important concept explored by Uzzi is related to this mix of bonding 

and bridging networks what he referred as to `network complementarity.' In his 

own words: “Networks high in complementarity produce premium outcomes 

because the features of different ties reinforce one another’s advantages while 

mitigating their disadvantages.” pp. 491.  
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The econometric tests yielded these results: the social network bonding 

links did not affect the probability of a given firm to get loans, but it does affect 

the price or interest rate of the loan. The latter is in agreement with field data. In 

regards to the tests about network complementarity these pointed out that these 

kinds of combined network links do produce optimal benefits relative to networks 

only of one type or another for a firm.

3. Where All This Lead Us? Research Questions

To what extent the game-theoretical results of network games (Goyal et. 

al. 2007) explain the empirical evidence of actual social networks in the market? 

What it is reported in field research on social networks may be just one type of 

equilibrium explained by the models. But here my purpose is toward building a 

rationale of: how social networks contribute to the development of commercial 

ties? In a more general vein:  How do firms coordinate to produce technology 

through networks; i.e. economic networks?

An economic or entrepreneurial network is formed by a profit motive and 

also social links. In this model nodes represent firms and the link between each 

pair of them is the result of a mutually advantageous economic decision. The 

environment is an industrial sector where firms interact locally but contribute to a 

global evolving network of technological innovation (Cowan et. al. 2006). Links in 

this case are not one-sided or directed but two-sided or undirected. 
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Moreover, the temporal dimension of the process will be studied by how 

long it takes to the network of firms to evolve a network structure (topology). This 

will serve us to answer the following questions: how do the model’s parameters 

and rules of interaction affect the network evolution? Under what networks profits 

may be greater? Are certain network topologies more prone to generate 

coordination among firms? and, in general: Can this be a part of that intangible 

capital that accounts for endogenous economic growth through knowledge? 

4. The Environment

The agents are firms that will interact within an industry. A firm may 

cooperate or not with another firm. There will be direct relationships that will be 

established pairwise, and indirect ones that are a consequence of the former kind 

of relationships. That is to say, each firm only focus on the relationships that 

establishes directly with other firms. This pairing of firms can be understood as a 

contract to collaborate whether in the funding of a new enterprise with innovative 

ideas or contributing with knowledge to a particular investment project. This 

keeps some similarity to what happens in places such as the Silicon Valley, but I 

keep the model rather general. There is neither a market demand nor a 

production technology. I have relied on Wasserman and Faust (1994), Scott 

(1991), and Goyal (2007) to write the next two subsections.
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4.1 Definitions

Firms are represented by a set of nodes N = {1,…, n} where n ≥ 2 and a 

finite number. Their pairwise relationships are links or edges denoted by gij ∈ {0, 

1} for nodes i and j. Where gij takes value 0 when the two nodes are not 

connected and 1 otherwise. Here I will consider only undirected links, which in 

this context means that both nodes mutually accept to establish and maintain the 

link. Let Gt be the network formed by a set nodes and its links at a time t. There 

is a set of networks  representing each of the G networks along time. 

A neighborhood of agent i is the set of all its neighbors with whom is 

directly connected represented by Ni(g) = {j | gij =1}. The degree of node i is the 

number of direct neighbors di(g) = | Ni(g) | in a given network G. The first order 

neighborhood of node i is Ni. The second order is Ni ∪ { Nz | z  ∈ Ni }. Other 

higher order neighborhoods can be defined in a similar manner. Let d be the 

maximum degree for a given network. The degree distribution of the network is 

denoted by P, and the frequency of nodes with degree d is P(d).

The following are relevant type of networks. The complete network, gc, is 

the one where every node has the same degree and this is equal to n -1. The 

empty network, ge, which is not connected or is the degree zero. A connected 

network is where there is a path between any two nodes even though is not a 

complete network. 
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Other important concept is a walk, which is a sequence of nodes whereby 

two nodes are linked. Here a node or a link may be included more than once in 

the walk. The length of the walk is the number of links it crosses or the number of 

nodes involved minus one. A trail is a walk in which all crossed links are distinct. 

In turn, a trail in which every node is distinct is a path. The length of the path is 

the number of links that involves. There is a shortest path between nodes i and j; 

called its geodesic distance in network G which is measured by its length and 

denoted by tij. For every node i in network G there may exist a set of shortest 

paths to every other node j. Whenever there is no path between any two nodes in 

G then their geodesic distance is tij = ∞. 

4.2 Measuring a Network 

When a network G is connected its average distance between nodes or 

path length is

                    

This is useful to know how close is an agent (firm) to another one and how easy 

or fast information or knowledge can be transferred in a network.

The centrality of an agent in a network refers to its prominence; i.e. how 

relevant or critical is the presence or absence of this agent in the network. This is 

measured by
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A related measure is the degree centralization of a network G. If there is a node i* 

with the highest degree centrality Cd* then 

                

The density of a network G measures the proportion of potential links present in 

it. It is expressed as a ratio of actual links to the maximum possible ones. This is

                   

Another measure that will be introduced is the clustering coefficient. This 

captures the overlapped links that exist among the neighbors of agent i or what 

proportions of its neighbors are also neighbors. This is defined for any node i as

    

Finally, the total clustering coefficient is the sum of all individual clustering 

coefficients. That is, . I will use these concepts and measures in different 

sections along the paper. 



18

5. The Evolving Network

At the beginning, independently of any value of the parameters and exit 

treatments, there will be only one firm in the market. Then, firms make their 

appearance in the environment one by one per period. ‘New’ firms arrive and 

propose to form a link or economic relationship with ‘old’ firms. The latter should 

decide whether to accept such a proposal. Those firms that are unsuccessful; i.e. 

the ones that held negative profits for several periods of time; leave the industry. 

Therefore, a dynamic process is recreated in which firms enter and leave the 

market affecting the economic relationships that have also been formed 

dynamically.

Every firm contributes to the technological innovations throughout the 

network. But every firm arrives in the deterministic fashion I explained previously. 

Thus at this stage the model does not include elements of stochasticity. The 

particular topology of the overall network changes every time period. Because 

some firms are entering while others are leaving the market. Firms are also risk 

neutral. 

The flow of innovations in this industry is the result of not just each firm 

contribution, but more importantly of the connectivity of the network that all firms 

form. I will draw on Jackson and Wolinsky (1996) formalization of the 

‘connections model’ from now on. Let wj be the market valuation of firm j’s 
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potential contribution to firm i’s innovative endeavors 1. Then, the accumulated 

value after a period t for firm i (which value wi is of itself) interacting with every 

other firm j in the network Gt is

       

where δ ∈ (0, 1) is a parameter that represents the transferability factor or how 

firm i gets access to the innovations of firm j via intermediate links and other firms  

in the network. This is expressed by di(gt) that is the degree of node i for a 

network g at t. Thus, the connection with node j is indirect via the local 

neighborhood of node i. The positive externality deteriorates the farther is firm j 

from i. There are costs; denoted by cij; of forming links between any two firms. 

Therefore, profits for firm i per unit of time are given by

The dynamics of the network is given here at two levels. Firstly, as I 

mentioned before there is not a fixed number of firms during the simulated time. 

As a consequence links between firms cannot be fixed either. Both, the number 

of firms and their links are permitted to evolve during the simulation. By doing 

this, the state variables of the firms are also altered every period during the 

experiments.

1 ‘Innovations’ within this literature have also been interpreted as ‘knowledge’ within each firm. A 
link is formed whenever this ‘knowledge’ is purposefully shared or diffused throughout the 
network; e.g. Cowan and Jonard (2006). I am avoiding this usage since I consider knowledge a 
more abstract category of thought than information, for instance. See Polanyi (1974: 69 -260) and 
Hayek (1937, and 1945) for further distinctions about knowledge and the relevance of its 
tacitness. So in my case innovation is the same as ‘new’ information.
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When a new firm arrives to this industry it proposes to form a link with an 

incumbent firm. When there are more than two firms the incumbent firm is 

randomly chosen from the new firm’s neighborhood. Next, I define a myopic 

pairwise dynamics in which: 

i) A new link is created as long as both firms do not get worse off by 

establishing this relationship, and at least one of them is strictly 

better off (Jackson and Watts, 2002). 

ii) An old link is severed if at least one of the firms who formed it 

exits the market due to accumulated negative profits for m 

successive periods. Otherwise, it is maintained.

The first point is standard in the study of endogenous network formation 

when there is a finite set of nodes during a simulation. While the links appear and 

disappear from the network at each period yielding certain network topologies. 

However, I should emphasize that in this model; in contrast to previous 

approaches; nodes also appear and disappear from the environment (or rather 

interface). The number of nodes and links are endogenous at each period. This is 

the main contribution of this paper. 

Before to proceed I should, also, point out that in this model I incorporate 

the notion of ex ante and ex post gains for the firms forming or removing links. 

Thus, I assumed that at the beginning of each period firms get to know the 



21

market valuation of others, which are represented by the wis. But the realized 

profits are given by (7) at the end of each period. This is also a different approach 

from the one implemented in Carayol and Roux (2005) and König(2008) in which 

case ‘knowledge’ is represented by ‘innovations’ that arrive every period 

according to a known probabilistic distribution. Leaving unspecified the distinction 

I introduce here regarding ex-ante versus ex-post profits.   

The second point, on the other hand, it is the result of merging two 

processes. The first one is a firm exiting the market due to consecutive negative 

profits (e.g. four quarters), and the second one is the deletion of the link(s) or 

economic relationship(s) between that firm and their directly connected firm 

partners (i.e. neighboring nodes). Here lies another innovation of the paper 

whereby the evaporation of nodes is paired with the deletion of their direct links. 

  

6. Simulation Results

Figure 1 depicts how firms and their linkages evolve through time for a 

typical run. Periods should be assumed larger than a day. It could be months and 

even quarters. The particular length of the period will only make sense when an 

empirical validation against actual data is carried out. The externality parameter 

(δ) is set at 0.95. I, also, here only present an exit rule (treatment) for firms 

leaving the market. This rule states that a given firm with negative profits or 
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unconnected from any other firm for more than 4 consecutive periods will exit the 

market. 

Below, I show snapshots of the evolution of the network at different time 

periods.

a) t= 40
Ave degree = 1.18

b) t = 200
Ave degree = 2.89

c) t = 500
Ave degree = 3.18

d) t= 1000
Ave degree = 3.2

Figure 2. Evolution of Firms Network. Degree mean values across firms.

At the bottom of each panel in Figure 2 the average degree is reported. 

Note how this measure increases between panel a) and b) and from then to c). 

Between c) and d) is more or less the same. I won’t make strong statistical 

claims at this moment (see more in section below). I just wanted to point out the 

monotonic increase of the average degree of the network. 

In figures from 3 through 6 the evolution of some key aggregate variables 

is presented. Figure 3 depicts two variables namely the number of ‘surviving’ 

firms and the ‘surviving’ links. It should be reminded that in this model firms enter 

the market at a constant rate of 1 per unit of time. Plus the exit rule previously 

mentioned implies that several firms may exit the market by the end of each 

period. Note that the number of firms and links increase more or less pari passu 
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up to 200 periods. After that firms grow at a decreasing rate whereas links grow 

increasingly faster until they start to fluctuate after 700 periods around a value of 

140.

                 Figure 3.

Figure 4 shows the evolution of average profits and average degree of the 

network of firms at each time step. It is not surprise that the correlation between 

both variables is 0.86. This stems from the profit equation per firm as specified in 

(7). This, of course, does not mean that any firm with the highest degree due to 

its higher number of related firms will always have the highest profit. Because in 

the profit equation (7) every firm also faces costs per each related firm that it 

keeps. In addition these costs vary from period to period. And there are no fixed 

costs, all costs are variable.  

Temporal Dynamics
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              Figure 4.

Figure 5 presents the average fraction of firms in the giant component 

along the simulation. Note that after 200 periods this fraction reaches 80% of the 

whole population of ‘surviving’ firms. This population at any time step may include 

the firms belonging to the giant component, firms that are part of other 

component(s), and temporarily unconnected firms. This fraction fluctuates 

between 80% and 90% after 300 periods.

               Figure 5.
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Figure 6 presents the degree distribution of the firms network after 50 

simulations each one measured at t =1000. This result shows a power law 

relationship when the distribution is measured in logs. The power coefficient is 

close to 1 and statistically significant at 95% level of confidence. I will point out 

that here this power law relationship is found in spite of the absence of a 

‘preferential attachment’ mechanism during the network formation. Next section 

presents a more formal analysis of robustness of the results.

Degree Distribution
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           Figure 6. Fifty simulations each one at t=1000.

7. Experiments

What is the effect of the externality parameter (δ) on the network degree 

and firms’ profits? Since average degree and profits are positively correlated the 

effect of increasing (decreasing) the externality parameter should be the same 

for both. Recall that the externality parameter is measuring how fast the rate of 

knowledge is spread over the network. The higher it is the faster knowledge is 
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being transferred throughout. I run experiments for δ = {0.05, 0.5, 0.95} and two 

exit rules. A firm will leave the market if for more than 4 or 12 consecutive periods 

has been having negative profits or has been unconnected from others; i.e. its 

degree is zero. This adds up to six experiments.

Figure 7. δ = {0.05, 0.5, 0.95}. 50 runs per experiment each one for t = 1000.   

Figure 7 reports the average degree of firms after 50 runs. The results of 

the six experiments (3 δ values times 2 exit rules) are showed from left to right. 

The externality parameter takes the values of {0.05, 0.5, 0.95} per each exit 

treatment. Exit treatments are also read from left to right. The first exit treatment 

(I) refers to the same rule applied to the results showed in section 6. While the 

second exit treatment (II) just increases that value to 12 consecutive periods but 

it works in the same fashion as mentioned in the previous paragraph. Thus, in 
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the figure I report the ordered pair values of {δ, exit rule} = {(0.05, I); (0.5, I); 

(0.95, I); (0.05, II); (0.5, II); (0.95, II)}. Note that within each exit treatment the 

average network degree monotonically increases with the value of the externality 

parameter as expected. Then, I proceed to test if the means across exit 

treatments per each value of δ are statistically equal or not with an unpaired 

difference means test with unequal variances. That is, I compare the means 

difference between the pairs (0.05, I) and (0.05, II); and so on (I implement two-

sided and one-sided tests). So that there will be three means difference tests. 

The results reject the null hypothesis of equal means (i.e. a zero value for the 

difference of means) at the 5% level of significance. For instance, it can be 

claimed that the average network degree when δ = 0.95 and the firms are 

interacting under exit rule (I) is statistically different (and higher) than the average 

network degree when δ = 0.95 but firms are interacting under exit rule (II). 

Next, Figure 8 reports the values of average profits after 50 runs again. 

The number of total experiments is the same as for the average network degree 

case. Also, the ordered pair values {δ, exit rule} are the same as before. It is also 

observed that within each exit treatment average profits monotonically increase 

with the value of the externality parameter. A means difference test was also 

applied to determine whether these values are statistically different across exit 

treatments exactly as I did for the average network degree case. The results of 

the three means difference test ordered as before yielded also a rejection of the 

null hypothesis in each case. Again, I can claim that the average profits when δ = 



28

0.95 and the firms are interacting under exit rule (I) is statistically different (and 

higher) than the average profits when δ = 0.95 but firms are interacting under exit 

rule (II). The higher the network degree or connectivity, and the most competitive 

the market, the higher the overall profits of firms.

Figure 8. δ = {0.05, 0.5, 0.95}. 50 runs per experiment each with t = 1000.

8. Concluding Remarks 

Castilla (2003: 125) found that the average degree of the overall network 

of venture capitalists in Silicon Valley is 2.8 while the same network statistic for 

Route 128 (Massachusetts) is 1.5. This is one of the findings on which he based 

his conclusion that the greater frequency of cooperation in Silicon Valley is what 
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explains its greater economic success. The empirical average degree reported 

there is pretty much the same reported here in Figure 7, i.e. 2.78 for the first exit 

treatment and δ = 0.95. Whereas the second exit treatment and the same 

externality value yield an average degree of 2.01. 

My goal here is not to make a precise quantitative calibration of the model. 

Rather at this stage a qualitative calibration is what I have in mind (Axtell and 

Epstein 1994). But, even as it stands the model may shed light on the empirical 

differences between Silicon Valley and Route 128 venture capitalists’ networks, 

for instance. As a matter of fact, here was also found that the higher the network 

connectivity the greater the profits; or the economic efficiency loosely defined 

(Romero 2006). The model, of course, cannot yet portrait the trade-off or 

complementarity between bonding and bridging links reported by Uzzi (1999). 

Nonetheless, the model at this stage is more able to explain a type of regional 

development due to factors within a hub like the one in Silicon Valley.  

    

Goyal (2007: 20-4) summarizes the features of empirical networks across 

several domains. Including corporate web site, coauthors, sexual contacts and 

R&D networks. He concludes: “[social and economic networks] have low average 

degree relative to the total number of nodes, the distribution of degrees is 

unequal, clustering is high, and the average distance between nodes is 

small.” (pp. 23-4) The model presented here, also yields a low average degree 

relative to nodes, see Figure 3. An unequal distribution of degrees was reported 
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in Figure 6. I have reported here neither the clustering coefficient nor the average 

path length but I would not be surprised if, in fact, it mimics the general pattern 

reported by Goyal.  

These results were yielded by the model and closely match the ones from 

empirical networks. Yet I did not follow in building the model more traditional 

approaches: such as preferential attachment mechanisms, random networks, or 

small world networks. I based my model more on simple economic grounds and 

local information. Thus, providing a more credible microeconomic behavior of the 

agents. 

Thomas and Griffin (1996) and Lin and Shaw (1998) present 

complementary works on supply chain networks and how coordination through 

top management techniques have become less and less of practical use in multi-

national process of production.  Knowledge and practices are so much 

distributed throughout the supply chain network that no one can manage it only 

relying on global information. In general, these supply chain networks are 

comprised by: raw material providers, manufacturers, assemblers, warehouses, 

and retailers. In turn, these networks can be subdivided into three types of 

categories, namely: buyer-vendor networks, production-distribution networks, 

and inventory-distribution networks. The model presented here falls into a 

production network category but it can be extended to include distribution and the 

demand aspects of an artificial industrial environment.
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Industries ranging from auto, computer hardware, airlines’ services, is 

where most of the case studies are found. The general point in all of them is that 

coordination in these industries that show vast ‘economies of scope’ have 

recently tended to spread their production processes as moving from vertically 

integrated towards more flatter networks. This has resulted from the search for 

coping with uncertainty and adaptation to a more competitive environment.  By 

doing so, leaders in these industries have been able to discover opportunities not 

known or existent before. This kind of coordinative processes that go beyond a 

particular firm or even region can account for an important part of economic 

growth not included in more traditional models.
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